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Research on Knowledge Representation, 
Machine Learning, and Knowledge Acquisition 

Final Report, covering the period 10/1/83 - 1/31/87 

NASA Grant Number NCC 2-274 
This report summarizes research in knowledge representation, machine learning, and 

knowledge acquisition performed at the Knowledge Systems Laboratory (KSL) and supported by 
NASA Cooperative Agreement number NCC 2-274. This work was performed over a period of 
more than three years, beginning in October of 1983 and ending in January 1987. The 
research conducted under this contract is continuing under NASA Contract NCC 2-220, 
research on architectures for concurrent symbolic computation, also at the KSL. Professors 
Edward A. Feigenbaum and Bruce G. Buchanan are co-Principal Investigators for this 
combined effort, which is entitled "Cooperating Knowledge-Based Systems". 

research progress over the three years. All technical publications of the Knowledge Systems 
Laboratory that are referenced in this report can be obtained by writing to the KSL. 

The goals of the research under NCC 2-274 are outlined below, followed by a summary of 

Goals of the Research 
Knowledge Representation and Use 

the qualitative knowledge necessary for solving large problems that require symbolic reasoning 
as well as numerical computation. Representing knowledge for computers entails finding a set 
of conventions for describing facts and relations about a problem that computers can use 
effectively. Over the last 25 years, research in artificial intelligence (AI) has produced several 
techniques for successfully representing and utilizing qualitative, non-mathematical 
information, including semantic nets, frames, logic, rules, and procedures. In particular, our 
research focuses on integrating different representation methods to describe different kinds of 
knowledge more effectively than any one method alone can. 

In particular, we have focused on representing and using spatial information about three- 
dimensional objects and constraints on the arrangement of these objects in space. A computer 
system for reasoning about spatial relationships must have flexible and powerful capabilities to 
describe objects and constraints at several levels of abstraction, to include qualitative as well as 
numeric constraints, to define procedures that operate on objects and apply constraints to find 
desirable configurations of objects, and to represent heuristics that guide the efficient 
application of these procedures. 

We have chosen an application domain for spatial reasoning and knowledge representation 
that is closely allied with many tasks of assembling complex three-dimensional structures: the 
assembly of a protein molecule from its atomic constituent parts. In this application, as in 
many spatial problem domains, the structure to be built must satisfy numerous constraints, only 
some of which are expressible as numeric limits. The program must understand alternative 
subassemblies and several levels of abstraction of the structure, and must reason about the 
constraints, objects. and operations that position the objects in order to solve the structure in 
reasonable amount of time. In addition, the system faces the possibility of inconsistent and 
noisy information in its data. 

Our work on this problem has resulted in a prototype expert system for protein structure 
determination called PROTEAN. It is implemented in BB1, a blackboard architecture that has 
facilities for representing the structures, relationships, and procedures needed to construct 
three-dimensional objects. This system architecture provides facilities for representing and 
integrating diverse kinds of knowledge, including problem-solving strategies (control 
knowledge) as well as domain specific knowledge. Progress on BB1 and PROTEAN are 
included in the following sections. 

The first major goal of this research is to develop flexible, effective methods for representing 
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In the last year of this research contract, we have also focused on a second application in 
Financial Resource Management (FRM). FRM assists in judgmental aspects of budget planning 
and management of the personnel, time, equipment, and financial resources of an organization. 
Commonly available tools (spreadsheets and databases) for such tasks provide little assistance 
in the representation and manipulation of symbolic information such as policies, procedures, 
and promises that are essential for effective planning and management. This domain presents 
interesting and challenging AI issues in knowledge acquisition, knowledge representation, 
constraint satisfaction and heuristic planning. Recent work on the FRM system is described 
below. 

Machine Learning and Knowledge Acquisition 
A second major theme, included in the final year of this contract, is the development of 

robust machine learning programs that can be integrated with a variety of intelligent systems. 
To make effective use these programs, it is also necessary to define criteria under which 
machine learning techniques can be successfully applied to different problem-solving 
architectures. 

methods in several different problem-solving environments. This work involves developing 
methods to learn strategic (or control) heuristics in the course of problem solving, developing 
tools for creating knowledge sources and knowledge representation, and examining the role of 
noise, the use of examples and counterexamples, and methods of knowledge representation in 
machine learning. 

medical (NEOMYCIN/HERACLES) and biochemical (PROTEAN) in addition to domain- 
independent investigations. We also are motivated by the need for effective tools for 
knowledge acquisition and maintenance of knowledge bases (IMPULSE in STROBE, and 
BBEDIT and KSEDIT in BB1). 

To achieve this goal, we are designing, implementing, and experimenting with learning 

Our research in machine learning has focused on several distinct problem domains including 

Research Progress 
PROTEAN Progress 

PROTEAN is an evolving knowledge-based system that determines the three-dimensional 
structure of protein molecules. The program uses empirically determined constraints as data 
and expert biochemical knowledge of protein structure and behavior to analyze this data and 
derive solutions to the structure. The problem is important, not only to chemists and 
biologists interested in the detailed results of the protein geometry, but also for the knowledge 
representation methods, problem-solving techniques, and heuristic approaches that are being 
developed for the assembly of structures subject to complex constraints. 

Substantial progress was made on the PROTEAN in the first two years of this contract. 
First, a conceptual framework for representing protein structure at several levels of detail was 
designed. Second, specific actions for positioning three-dimensional objects subject to 
constraints were defined. Third, BB1 knowledge sources were built to implement the 
blackboard effects of these actions in the reasoning component. Fourth, two prototypes of a 
geometric constraint satisfaction system were built to actually compute the results of these 
actions, one implemented in LISP and the other in the C programming language. Fifth, we 
developed a graphics display program to show the results of the geometric computations in 
three dimensions on a Silicon Graphics IRIS graphics terminal. 

Three technical papers describe our initial approach and preliminary results from this work. 
The first two of these are discussions of the protein structure determination problem, oriented 
toward a biochemical audiences [20, 211. The third report [7] includes a more technical 
description of the AI approach and methods used in PROTEAN to solve the structure of a 
small protein at the "solid" level of abstraction, in which secondary structures of the protein 
are represented as simple geometric solids. 

component running on a Xerox 1100 LISP workstation in BB1 (see below) and the geometric 
PROTEAN is currently implemented as a distributed computation system, with the reasoning 
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and display components running on an IRIS graphics workstation. These machines 
communicate instructions and results of their computations over a local area network. 

In August 1986, Dr. Barbara Hayes-Roth presented a paper on PROTEAN to the 1986 AAAI 
conference [17]. Altman and Jardetzky presented the PROTEAN approach to protein structure 
using empirical data without consideration of theoretical constraints in [ 13. Lichtarge 
presented a systematic characterization and validation of the PROTEAN method in his Ph.D. 
thesis [23] and, with other authors, in [24]. 

In 1986, the initial prototype of the geometry system was refined to increase its generality 
and improve its ability to represent many kinds of structures. In [3, 41, Brinkley et al. 
describe this general system as employed by PROTEAN to determine possible locations for 
objects. The placement of objects subject to constraints is a combinatorially explosive task, 
and it is the core problem that PROTEAN solves. PROTEAN attempts to make the problem 
computationally feasible by refining a solution in three ways: (a) solving the problem at several 
levels of detail; (b) using constraint satisfaction algorithms to reduce the number of possible 
solutions to enumerate; and (c) employing heuristics to choose the order in which constraints 
are applied. 

The computations of the system described above are time consuming and expensive to 
perform. The time needed to solve a structure depends crucially on the order in which 
geometric computations are performed, suggesting that intelligent selection of actions would be 
useful to increase the efficiency of PROTEAN. Garvey et al. [13] investigated several control 
strategies in PROTEAN to determine the cost of control knowledge compared with the benefits 
of using it. They found that different kinds of control knowledge have different costs and 
degrees of effectiveness, but that the cost of additional control was generally less that the 
benefit of improved efficiency. In addition, these relative benefits actually increase with the 
complexity and computational requirements of the problem. 

Altman and Buchanan [2] explore the utility of compiled knowledge in the construction of 
protein structures as a way to increase the efficiency of part of the problem-solving activity of 
PROTEAN. Their approach begins with a declarative representation of control strategies and 
partially compiles this knowledge into procedures that plan the long-range strategy of the 
system. They find that a combination of methods that take advantage of unexpected 
opportunities in the evolving solution ( "opportunistic" knowledge sources) and a procedurally 
defined global plan retains much of the flexibility of a declarative representation of control 
while gaining advantages learned from previous experience with the PROTEAN system. 

and computation at the atomic level of detail is making a more detailed description of protein 
structure available. Second, we continue to experiment with strategies for more efficient 
assembly of the protein in one subunit, and for building and combining subunits of the 
protein in a "divide and conquer" approach. 

BB1 Progress 
BB1 is a knowledge based system using a blackboard architecture for control, described 

in [ld]. It is the system in which the reasoning components of PROTEAN are implemented, 
chosen because of its ability to integrate diverse kinds of data and independent sources of 
expertise. BB1 was first implemented in 1984 and 1985 in Interlisp on a large DEC-20 
computer and Xerox 1100 series LISP workstations. Since that time, the system has been 
translated into CommonLISP and is now available on a number of other computers [ll. 121. 

A knowledge source (KS) is a source of expertise on a part of the problem-solving task. BB1 
can include three different kinds of knowledge sources: 

0 a domain KS specifies actions that directly contribute to the evolving solution on 

a control KS contains strategic knowledge about which of several possible actions is 

0 a learning KS observes changes on the blackboard and the behavior of an expert 

PROTEAN research is continuing, focused on two aspects. First, research on representation 

the blackboard, 

the best to take during the problem-solving, 

using the system to create new strategic or domain knowledge. 
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The BB1 architecture differs from other blackboard systems by defining structures for the 
support of control KSs and strategic knowledge. 
To assist in the development of control knowledge sources, the BB1 framework was enhanced 

to include MARCK, a module that builds control knowledge sources interactively during the 
execution of BB1 [lS]. The system asks the user at each step if the action that BB1 rates most 
highly is the best one to take. If the expert indicates that another action is more desirable, 
MARCK is activated and interviews the expert to determine how BBl's choice differs from the 
user's choice. MARCK then uses this information to create a heuristic and programs it in a 
control knowledge source. This heuristic is then available for further cycles of the expert 
system and may improve the problem-solving performance. 

versatility and usefulness of the BB1 system have been enhanced by several developments 
described below. 

BBEDIT is a tool built by Alan Garvey for creating and maintain knowledge bases for use 
with BB1. It has encouraged the development of several versatile, independent knowledge bases 
describing biochemical and problem solving concepts, and has encouraged formalization and 
specification of knowledge formerly in procedures in the PROTEAN system. The 
independence of the knowledge bases allows their use in related expert systems. 

Micheal Hewett. KSEDIT facilitates the building of syntactically correct knowledge sources and 
allows the user to focus on the logical structure of the system rather than on the detailed 
syntax of the knowledge source. 

Hayes-Roth et al. [la] developed ACCORD, a layered environment for reasoning about 
problem-solving actions in the class of arrangement-assembly problems, in which solutions are 
created by arranging objects by assembly. The ACCORD framework is a set of knowledge 
structures used to represent actions, events, states, and facts involved in solving problems by 
the method of construction subject to constraints. ACCORD is used in PROTEAN, but is 
applicable to many varied tasks including construction site layout and travel planning. 

describes the explanation facility of BB1 that describes actions along with the considerations 
and decisions that lead up to them. ExAct takes advantage of the structure of the ACCORD 
language to explain system actions and ratings in terms of the heuristics and control plans on 
the control blackboard. 

Goal-directed reasoning has been demonstrated in BB1 in PROTEAN, augmenting the existing 
hierarchical planning capabilities. A paper by Johnson [22] describes the simultaneous use and 
integration of hierarchical, opportunistic, and goal-directed strategies to determine protein 
structure. The reasoning mechanism exploits BBl's control semantics (actions, events) and 
ACCORDS representation of the relations between actions, events, and states to deliberately 
promote particular kinds of actions and detect opportunities to perform generally desirable 
actions. 

BB1 is an AI architecture that has been is fully implemented in both Interlisp-D and in 
CommonLISP. In the past, very little has been published on the development and 
implementation of AI systems. In [19], Hewett discusses the software architecture of BB1 and 
reviews the design decisions and their consequences in this implementation. 

FRM - Financial Resource Management 
The Financial Resource Management (FRM) system is discussed in a paper by Gelman et 

al. [14]. FRM assists in judgmental aspects of budget planning and management of the 
personnel, time, equipment, and financial resources of an organization. Commonly available 
tools (spreadsheets and databases) for such tasks provide little assistance in the representation 
and manipulation of symbolic information such as policies, procedures, and promises that are 
essential for effective planning and management. 

Capturing the domain knowledge of expert managers is crucial, since much of the expertise 
of effective managers is acquired only by experience, and is neither documented nor passed 

Improvements are continually being made to the BB1 framework. During the last year, the 

KSEDIT is a specialized editor for control and domain knowledge sources in BB1, built by 

ExAct is a module for explaining the actions of a system in BB1. In [26], Schulman 
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from person to person. From an A I  perspective, this domain presents many complex 
constraint satisfaction problems. FRM represents constraints in a knowledge base, including 
priority and context information, and applies them to budget preparation and budget 
replanning while presenting information to the user in a spreadsheet-like format. 

Inherent in FRM is the need for a "smart" user interface, to enable the user to express 
constraints easily and naturally as well as to see the results of the application of these 
constraints in a familiar format. FRM is currently implemented using STROBE [28], an 
object-oriented programming envir0nment.l IMPULSE, a powerful editor for STROBE 
systems 1251, allows extensive customization and is used in FRM as a "smart" editor for 
constraints. 

Progress in Machine Learning 

selection of counter examples in concept formation with the rule-learning system RL [9]. 
They find that "near misses", negative examples that are similar to acceptable cases, are 
particularly effective in shrinking the space of possible theories that explain the examples 
observed. They define and use a metric for the distance of each example from the target 
theory and measure the effectiveness and efficiency of examples related to the distance 
measured, demonstrating that the power of near misses to restrict the space of possible theories 
results from their small distance from the target. They also find that intelligent selection of 
instances based upon knowledge of the state of the evolving theory results in a faster 
convergence of an evolving theory toward the target concept, requiring many fewer cases for 
learning. 

Buchanan et al. present an empirical study of the incremental learning process using a careful 

Debugging Knowledge Structures 
In large rule-based systems, the performance of the system is strongly dependent on the 

degree to which the knowledge of the system is "debugged" and refined, i.e. erroneous rules are 
identified and removed, redundant rules are combined, missing rules are added, and certainty 
factors of rules are found that give good results over many cases. Such evaluation and 
restructuring of knowledge is an important type of learning and can be automated to some 
extent. Here we describe recent work in the debugging and refinement of knowledge bases 
using several techniques. 

Wilkins and Buchanan [30] describe a problem with the rule sets of rule-based systems that 
use certainty factors, i.e. better individual rules do not necessarily lead to a better overall set of 
rules. Since all less-than-certain rules contribute evidence towards erroneous conclusions for 
some problem instances, the distribution of these erroneous conclusions is not necessarily 
related to the quality of individual rules. This has important consequences for automatic 
machine learning of rules, since rule selection is usually based on measures of quality of 
individual rules. The authors present a method using a new Antidote Algorithm that performs 
a model-directed search of the rule space to find an improved rule set. They report that the 
application of this method significantly reduced the number of misdiagnoses when applied to a 
rule set generated from 104 training instances. 

Debugging the knowledge structures of a problem solving agent is discussed using the 
synthetic agent method [31], to determine a performance upper bound for debugging a 
knowledge base. The synthetic agent systematically explores the space of near miss training 
instances and expresses the limits of debugging in terms of the knowledge representation and 
control language constructs of the expert system. This paper presents the framework for 
evaluating a differential modeling system. 

In [32], Wilkins describes the ODYSSEUS apprenticeship learning program, designed to 
refine and debug knowledge bases for the HERACLES expert system shell. ODYSSEUS 
analyzes the behavior of a human specialist using two underlying domain theories, a strategy 

'STROBE, like KEE and LOOPS. is a descendant of the UNIT package [27] developed for the MOLGEN project at 
Stanford University [lo]. 
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theory for the problem solving method (heuristic classification), and an inductive theory based 
on past problem solving sessions. ODYSSEUS improves the knowledge base for the expert 
system shell, identifying bugs in the system's knowledge in the process of following the line- 
of-reasoning of an expert, serving as a knowledge acquisition subsystem. The system can also 
be used as part of an intelligent tutor, identifying problems in a novice's understanding and 
serving as student modeler for tutoring systems. 

Wilkins et al. illustrate that an explicit representation of the problem solving method and 
underlying theories of the problem domain provide a powerful basis for automating learning 
for expert system shells [33]. By using domain-independent task procedures and task 
procedure metarules, domain knowledge can be located and applied to achieve problem solving 
subgoals. However, these rules are often limited in use due to insufficient domain knowledge. 
This paper describes the use of metarule critics in ODYSSEUS for automating the acquisition 
of domain knowledge, illustrating a powerful form of failure-driven learning at the level of 
subgoals as well as at the level of solving the entire problem. 

Publications of Interest 

he discusses automated reasoning and the heuristic approach, the history and characteristics of 
expert systems, and the "expertness" of these programs. He also presents some directions for 
the future of expert systems technology and its application. 

In [6], Buchanan presents a list of expert systems that were being actively used in academic 
and industrial applications at the time or writing. This listing is categorized by application 
area and, although incomplete and now out of date, indicates the importance of expert systems 
technology in actual applications. 

intelligence [29]. This technical report is used as a study guide for Ph.D. students for the 
qualifying examinations at Stanford University, containing references to seminal papers in 
major fields of AI research. 

Buchanan discusses the nature of "Artificial Intelligence as an Experimental Science*' [8] and 
argues that observation and experimentation in this field, as in the physical sciences, will 
improved our understanding of intelligent behavior of people and computers. He also presents 
examples of projects that have completed a research cycle by analyzing data collected from 
demonstrations of AI systems and generalizing their results. He suggests that AI research may 
benefit from the combination of an empirical, experimental approach with carefu! evaluation 
and characterization of AI methods and their results. 

Buchanan presents a discussion of rule-based expert systems in his article [ 5 ] .  In this report, 

Subramanian and Buchanan have prepared a reading list for students of artificial 

0 ther NASA- related Activities 
Dr. Craig Cornelius, research associate in the Helix Group of the KSL, presented a talk 

entitled *'PROTEAN: Deriving Protein Structure From Constraints" to the AI Research Forum 
held at  NASA-Ames Research Center July 22-24, 1987. He discussed the objectives of the 
PROTEAN project, along with the status of BB1 and PROTEAN and plans for extension of 
the work. A report on this research was also submitted to "NASA Proceedings'*. 

on April 24, 1987 to explore areas of mutual interest in artificial intelligence research and 
applications. In an all-day briefing. several KSL researchers presented some aspects of their 
current work that are relevant to the interests of NASA. 

A group of 15 managers from the 8 NASA centers visited the Knowledge Systems Laboratory 
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